10.1 Curves Defined by Parametric Equations

Parametric equations help us model the trajectories of moving objects. Sometimes it is impossible to describe the trajectory of a moving object with a function of the from $y=f(x)$ because the trajectory fails the vertical line test. Consider the following trajectory.

Note that both the x - and y-coordinates of the particle are functions of time so we can write $x=f(t)$ and $y=g(t)$. Here t is called the parameter.

In addition, each value of t gives an ordered Pair $(\mathrm{x}, \mathrm{y})=(\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{t}))$. In other words, as t Varies so does the point $(f(t), g(t))$. Connecting Those points gives rise to our parametric curve.

Note: t does not always represent time but if it is used in the parametric equations, it probably does.

Example: Graph and analyze the parametric equations $x=t^{2}-2 t$ and $y=t+1$

Create a table for different values of t. (Unless we know that t represents time, we can have $t<0$.) Plot the points.

\mathbf{t}	\mathbf{x}	\mathbf{y}	(x, y)
-2	8	-1	$(8,-1)$
-1	3	0	$(3,0)$
0	0	1	$(0,1)$
1	-1	2	$(-1,2)$
2	0	3	$(0,3)$
3	3	4	$(3,4)$
4	8	5	$(8,5)$

A particle whose position is given by the parametric equations moves along the curve in the direction of the arrows as tincreases. Notice that consecutive points marked on the curve are at equal time intervals but not at equal distances. That is because the particle slows down and then speeds up as t increases.

This curve appears to be a parabola. We can confirm this by eliminating the parameter t and identifying the equation. Since $\mathbf{y}=\mathbf{t}+1$ then we can say $\mathbf{y}-\mathbf{1}=\mathbf{t}$ and we can substitute this unto the first equation of $x=t^{2}-2 t$.

$$
\begin{gathered}
x=(y-1)^{2}-2(y-1) \\
x=y^{2}-2 y+1-2 y+2
\end{gathered}
$$

$$
x=y^{2}-4 y+3
$$

Since $\boldsymbol{x}=\boldsymbol{y}^{\mathbf{2}}-\mathbf{4 y}+\mathbf{3}$ is a parabola opening to the right, we can say that the parametric equations represent a parabola.

No restriction was placed on the parameter t in this example so we assumed that t could be any real number. BUT sometimes we restrict t to lie in a finite interval. For instance, consider the parametric curve

$$
x=t^{2}-2 t \quad y=t+1 \quad 0 \leq t \leq 4
$$

In this case we would get the graph at the right.

In general, the curve with parametric equations $x=f(t) \quad y=g(t) \quad a \leq t \leq b$ has an Initial point of $(\boldsymbol{f}(\boldsymbol{a}), \boldsymbol{g}(\boldsymbol{a}))$ and a terminal point of (f(b), $\boldsymbol{g}(b)$).

Example: Graph and analyze the parametric equations

$$
x=4 \cos (2 \pi t) \quad y=4 \sin (2 \pi t), \quad \text { for } 0 \leq t \leq 1
$$

Create a table using different values of t.

\mathbf{t}	\mathbf{x}	\mathbf{y}	(\mathbf{x}, y)
0	4	0	$(4,0)$
$1 / 8$	$2 \sqrt{2}$	$2 \sqrt{2}$	$(2 \sqrt{2}, 2 \sqrt{2})$
$1 / 4$	0	4	$(0,4)$
$3 / 8$	$-2 \sqrt{2}$	$2 \sqrt{2}$	$(-2 \sqrt{2}, 2 \sqrt{2})$
$1 / 2$	-4	0	$(-4,0)$
$3 / 4$	0	-4	$(0,-4)$
1	4	0	$(4,0)$

The result appears to be a circle with radius 4 . To identify the curve we can eliminate the parameter t.

$$
\begin{aligned}
x^{2}+y^{2} & =(4 \cos (2 \pi t))^{2}+(4 \sin (2 \pi t))^{2} \\
& =16 \cos ^{2}(2 \pi t)+16 \sin ^{2}(2 \pi t) \\
& =16\left[\cos ^{2}(2 \pi t)+\sin ^{2}(2 \pi t)\right] \\
& =16[1] \\
x^{2}+y^{2} & =16
\end{aligned}
$$

The graph of the parametric equations is a circle $x^{2}+y^{2}=16$.

Example: Consider the parametric equations

$$
x=-2+3 t \quad y=4-6 t \quad \text { for }-\infty \leq t \leq \infty
$$

Find the slope-intercept form of the line.
To solve this problem solve one of the parametric equations for t and substitute this into the other parametric equation. (In other words, eliminate the parameter t.)

$$
\begin{gathered}
t=\frac{x+2}{3} \\
y=4-6\left(\frac{x+2}{3}\right) \\
y=4-2(x+2) \\
y=4-2 x-4 \\
y=-2 x
\end{gathered}
$$

It doesn't matter which parametric equation you rewrite. To work this problem starting with the $2^{\text {nd }}$ parametric equation we would get:

$$
\begin{gathered}
t=\frac{y-4}{-6} \\
x=-2+3\left(\frac{y-4}{-6}\right) \\
x=-2+\left(\frac{y-4}{-2}\right) \\
x=-2-\frac{1}{2} y+2 \\
x=-\frac{1}{2} y \\
y=-2 x
\end{gathered}
$$

As you can see we get the same result. However, careful selection of which parametric equation you solve for t can result is less complicated work.

