10.1 Curves Defined by Parametric Equations

Parametric equations help us model the trajectories of moving objects. Sometimes it is impossible to describe the trajectory of a moving object with a function of the from y = f(x) because the trajectory fails the vertical line test. Consider the following trajectory.

Note that both the x- and y-coordinates of the particle are functions of time so we can write $\mathbf{x} = \mathbf{f}(\mathbf{t})$ and $\mathbf{y} = \mathbf{g}(\mathbf{t})$. Here **t** is called the parameter.

In addition, each value of **t** gives an ordered Pair (x, y) = (f(t), g(t)). In other words, as **t** Varies so does the point (f(t), g(t)). Connecting Those points gives rise to our parametric curve.

Note: t does not always represent time but if it is used in the parametric equations, it probably does.

Example: Graph and analyze the parametric equations $x = t^2 - 2t$ and y = t + 1

Create a table for different values of **t**. (Unless we know that **t** represents time, we can have **t** < **0**.) Plot the points.

t	х	у	(x, y)
-2	8	-1	(8, -1)
-1	3	0	(3, 0)
0	0	1	(0, 1)
1	-1	2	(-1, 2)
2	0	3	(0,3)
3	3	4	(3, 4)
4	8	5	(8,5)

A particle whose position is given by the parametric equations moves along the curve in the direction of the arrows as **t** increases. Notice that consecutive points marked on the curve are at equal time intervals but not at equal distances. That is because the particle slows down and then speeds up as **t** increases.

This curve appears to be a parabola. We can confirm this by eliminating the parameter t and identifying the equation. Since y = t + 1 then we can say y - 1 = t and we can substitute this unto the first equation of $x = t^2 - 2t$.

$$x = (y - 1)^{2} - 2(y - 1)$$

$$x = y^{2} - 2y + 1 - 2y + 2$$

 $x = y^2 - 4y + 3$

Since $x = y^2 - 4y + 3$ is a parabola opening to the right, we can say that the parametric equations represent a parabola.

No restriction was placed on the parameter **t** in this example so we assumed that **t** could be any real number. **BUT** sometimes we restrict **t** to lie in a finite interval. For instance, consider the parametric curve

 $x = t^2 - 2t$ y = t + 1 $0 \le t \le 4$

In this case we would get the graph at the right.

In general, the curve with parametric equations x = f(t) y = g(t) $a \le t \le b$ has an **Initial point** of (f(a), g(a)) and a **terminal point** of (f(b), g(b)).

Example: Graph and analyze the parametric equations

 $x = 4\cos(2\pi t)$ $y = 4\sin(2\pi t)$, for $0 \le t \le 1$

Create a table using different values of **t**.

		(x, y)
4	0	(4, 0)
$2\sqrt{2}$	$2\sqrt{2}$	$(2\sqrt{2}, 2\sqrt{2})$
0	4	(0,4)
$-2\sqrt{2}$	$2\sqrt{2}$	$(-2\sqrt{2}, 2\sqrt{2})$
-4	0	(-4, 0)
0	-4	(0, -4)
4	0	(4, 0)
	$0 \\ -2\sqrt{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The result appears to be a circle with radius 4. To identify the curve we can eliminate the parameter t.

$$x^{2} + y^{2} = (4\cos(2\pi t))^{2} + (4\sin(2\pi t))^{2}$$
$$= 16\cos^{2}(2\pi t) + 16\sin^{2}(2\pi t)$$
$$= 16[\cos^{2}(2\pi t) + \sin^{2}(2\pi t)]$$
$$= 16[1]$$
$$x^{2} + y^{2} = 16$$

The graph of the parametric equations is a circle $x^2 + y^2 = 16$.

Example: Consider the parametric equations

$$x = -2 + 3t$$
 $y = 4 - 6t$ $for - \infty \le t \le \infty$

Find the slope-intercept form of the line.

To solve this problem solve one of the parametric equations for **t** and substitute this into the other parametric equation. (In other words, eliminate the parameter **t**.)

$$t = \frac{x+2}{3}$$
$$y = 4 - 6\left(\frac{x+2}{3}\right)$$
$$y = 4 - 2(x+2)$$
$$y = 4 - 2x - 4$$
$$y = -2x$$

It doesn't matter which parametric equation you rewrite. To work this problem starting with the 2nd parametric equation we would get:

$$t = \frac{y-4}{-6}$$
$$x = -2 + 3\left(\frac{y-4}{-6}\right)$$
$$x = -2 + \left(\frac{y-4}{-2}\right)$$
$$x = -2 - \frac{1}{2}y + 2$$
$$x = -\frac{1}{2}y$$
$$y = -2x$$

As you can see we get the same result. However, careful selection of which parametric equation you solve for **t** can result is less complicated work.